Abstract

Analogy-making is at the core of human and artificial intelligence and creativity with applications to such diverse tasks as proving mathematical theorems and building mathematical theories, common sense reasoning, learning, language acquisition, and story telling. This paper introduces from first principles an abstract algebraic framework of analogical proportions of the form ‘a is to b what c is to d’ in the general setting of universal algebra. This enables us to compare mathematical objects possibly across different domains in a uniform way which is crucial for AI-systems. It turns out that our notion of analogical proportions has appealing mathematical properties. As we construct our model from first principles using only elementary concepts of universal algebra, and since our model questions some basic properties of analogical proportions presupposed in the literature, to convince the reader of the plausibility of our model we show that it can be naturally embedded into first-order logic via model-theoretic types and prove from that perspective that analogical proportions are compatible with structure-preserving mappings. This provides conceptual evidence for its applicability. In a broader sense, this paper is a first step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like common sense reasoning and computational learning and creativity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call