Abstract

Human language is extraordinarily creative in form and function, and adapting to this ever-shifting linguistic landscape is a daunting task for interactive cognitive systems. Recently, construction grammar has emerged as a linguistic theory for representing these complex and often idiomatic linguistic forms. Furthermore, analogical generalization has been proposed as a learning mechanism for extracting linguistic constructions from input. I propose an account that uses a computational model of analogy to learn and generalize argument structure constructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.