Abstract

Achieving carbon neutrality requires deployment of large-scale renewable energy technologies like solar photovoltaic (PV) panels. Nevertheless, methods to ascertain the overall environmental impacts PVs and further improve their sustainability are under-investigated. In an effort to provide more understanding of this crucial topic, this research focuses on silicon flows—a key element for manufacturing crystalline silicon PVs. Using system dynamics modeling, we conduct a comprehensive environmental cost assessment of the silicon flows used in PVs based on a comparative analysis between the United States and China as the leading global PV manufacturers. Despite the advancement in wafer quality, material usage reductions and overall price decreases achieved in recent decades, our results project a substantial increase in energy and water consumption in China related to Metallurgical Grade Si (MG-Si), Solar Grade Si (SoG-Si) and cell manufacturing by 2030. An approximate 6.5 times increase of energy and water consumption is observed for c-Si cell manufacturing in China between 2010 and 2020. In 2030, increases of 70% in energy consumption and 69% in water use are estimated for Chinese MG-Si and SoG-Si production. The most significant environmental impact is observed in silicon cell and module manufacturing in both countries, particularly concerning GHG, SOx and NOx emissions. This study provides valuable insights into the environmental impacts of these two major solar panel manufacturing countries by examining the silicon life cycle, from production to end-of-life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.