Abstract

This article describes a project to design and build prototype analog early vision systems that are remarkably low-power, small, and fast. Three chips are described in detail. A continuous-time CMOS imager and processor chip uses a fully parallel 2-D resistive grid to find an object's position and orientation at 5000 frames/second, using only 30 milliwatts of power. A CMOS/CCD imager and processor chip does high-speed image smoothing and segmentation in a clocked, fully parallel 2-D array. And a chip that merges imperfect depth and slope data to produce an accurate depth map is under development in switched-capa citor CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.