Abstract

A cost-effective artificial humic substances (humic acid-modified biochar, HA-BCs) is fabricated by using conventional hydrothermal-assisted pyrolysis technique, and then is considered as a promising adsorbent material for removing mercury ions from aqueous solution. Artificial humic acid (A-HA), humic acid-modified biochar (HA-BCs) are analyzed by using SEM, EA, XRD, FTIR, XPS, and BET techniques. The removal efficiency of mercury ions was greater than 95% after reaching the adsorption equilibrium. Meanwhile, the adsorption kinetics coincided with the pseudo-second-order model and the isotherms for mercury ion sorption can be best interpreted using Freundlich isotherm model, with high regression coefficients (R2 = 0.967–0.990). Furthermore, the surface properties of HA-BCs before and after mercury adsorption are compared and evaluated, realizing that the mechanisms of removal of mercury ions on HA-BCs mainly include surface complexation with oxygen/nitrogen functional groups (-OH, –COOH and –NH2) and formation of precipitation with CO32− and OH−. Furthermore, the used HA-BCs can be regenerated via 0.05 mol/L KI solution and the adsorption capacity of mercury still reaches at 32.57 mg/g after four cyclic utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call