Abstract

It is well established that linear dispersive modes in a flowing quantum fluid behave as though they are coupled to an Einstein-Hilbert metric and exhibit a host of phenomena coming from quantum field theory in curved space, including Hawking radiation. We extend this analogy to any nonrelativistic Goldstone mode in a flowing spinor Bose-Einstein condensate. In addition to showing the linear dispersive result for all such modes, we show that the quadratically dispersive modes couple to a special nonrelativistic spacetime called a Newton-Cartan geometry. The kind of spacetime (Einstein-Hilbert or Newton-Cartan) is intimately linked to the mean-field phase of the condensate. To illustrate the general result, we further provide the specific theory in the context of a pseudo-spin-1/2 condensate where we can tune between relativistic and nonrelativistic geometries. We uncover the fate of Hawking radiation upon such a transition: it vanishes and remains absent in the Newton-Cartan geometry despite the fact that any fluid flow creates a horizon for certain wave numbers. Finally, we use the coupling to different spacetimes to compute and relate various energy and momentum currents in these analog systems. While this result is general, present day experiments can realize these different spacetimes including the magnon modes for spin-1 condensates such as $^{87}$Rb, $^{7}$Li, $^{41}$K (Newton-Cartan), and $^{23}$Na (Einstein-Hilbert).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call