Abstract
An analog computer makes use of continuously changeable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to solve a given problem. While these devices are usually computationally more powerful than their digital counterparts, they suffer from analog noise which does not allow for error control. We will focus on analog computers based on active electrical networks comprised of resistors, capacitors, and operational amplifiers which are capable of simulating any linear ordinary differential equation. However, the class of nonlinear dynamics they can solve is limited. In this work, by adding memristors to the electrical network, we show that the analog computer can simulate a large variety of linear and nonlinear integro-differential equations by carefully choosing the conductance and the dynamics of the memristor state variable. We study the performance of these analog computers by simulating integro-differential models related to fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others. Finally, we perform stability tests by considering imperfect analog components, obtaining robust solutions with up to 13% relative error for relevant timescales.
Highlights
Analog computers employ continuously tunable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to codify and solve a given problem
We study the performance of these analog computers by simulating integro-differential models of fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others
We have studied the inclusion of memristors into the network of electric analog computers
Summary
An analog computer makes use of continuously changeable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to solve a given problem. By adding classical memristors to the network of an electrical analog computer, we show that it can simulate a large variety of linear and nonlinear integro-differential equations with interest in mathematics and physics. This is possible by appropriately choosing the conductance of the memristors and the dynamics of its state variable. We study the performance of these analog computers by simulating integro-differential models of fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others. It is noteworthy to mention that the operation conditions of an off-the-shelf memristor fit those of usual circuit toolboxes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.