Abstract
In this paper, we present a new analog error correcting coding scheme for real valued signals that are corrupted by impulsive noise. This product code improves Donoho's deterministic construction by using a probabilistic approach. More specifically, our construction corrects more errors than the Donoho matrices by allowing a vanishingly small probability of error (with the increase in block size). The problem of decoding the long block code is decoupled into two sets of parallel Linear Programming problems. This leads to a significant reduction in decoding complexity as compared to one-step Linear Programming decoding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.