Abstract

The activation temperature T in the de Sitter environment is twice the Gibbons–Hawking temperature, related to the cosmological horizon. We consider the activation temperature as the local temperature of the de Sitter vacuum, and construct the local thermodynamics of the de Sitter state. This thermodynamics includes also the gravitational coupling K and the scalar Riemann curvature mathcal{R} as the thermodynamically conjugate variables. These variables modify the thermodynamics of the Gibbs–Duhem relation in the de Sitter state. The free energy density is proportional to - {{T}^{2}}, which is similar to that in the nonrelativistic Fermi liquids and in relativistic matter with equation of state w = 1. The local entropy is proportional to the local temperature, while the total entropy inside the cosmological horizon is A{text{/}}4G, where A is the area of the horizon. This entropy is usually interpreted as the entropy of the cosmological horizon. We also consider the possible application of the de Sitter thermodynamics to the Schwarzschild–de Sitter black hole and to black and white holes with the de Sitter cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.