Abstract

We represent Born’s rule as an analog of the formula of total probability (FTP): the classical formula is perturbed by an additive interference term. In this note we consider practically the most general case: generalized quantum observables given by positive operator valued measures and measurement feedback on states described by atomic instruments. This representation of Born’s rule clarifies the probabilistic structure of quantum mechanics (QM). The probabilistic counterpart of QM can be treated as the probability update machinery based on the special generalization of classical FTP. This is the essence of the Vaxjo interpretation of QM: statistical realist contextual and local interpretation. We analyze the origin of the additional interference term in quantum FTP by considering the contextual structure of the two slit experiment which was emphasized by R. Feynman.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.