Abstract

Abstract Analog experiments of melt segregation and migration in lower crustal rocks have been conducted using paraffin wax. The wax has a mechanical planar anisotropy which reproduces the pervasive foliation of high-grade metamorphic rocks. The shortening of a layer of partially molten wax (melt fraction between 15 and 20%) results in the movement of a part of the liquid from the microscopic porosity of the wax to the outside of the layer in large accumulation sites. Four stages can be identified: (1) from the beginning of the shortening, melt segregates into dilatant foliation-parallel veins; (2) the development of a fold occurs with an increasing accumulation of liquid in the limbs; (3) strain localization and vein connection allows the nucleation of shear bands; (4) melt migration is channelled by the shear band toward external pockets. The first two stages involve melt percolation from kinematically controlled high-stress areas around growing veins. The third stage is associated with local attainment of a segregated melt critical concentration estimated at 14–15%. The last point involves both horizontal and upward migration of the melt. Melt segregation and migration are highly scale- and strain-dependent mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call