Abstract

To evaluate the potential usefulness of iron labeling as a means for identifying the telolysome, autophagosome and autolysosome populations of rat liver, animals treated with Jectofer (iron-citric acid-sorbitol complex), or with Jectofer followed by glucagon, have been studied with a variety of biochemical and morphological methods. Differential centrifugation studies of liver homogenates revealed that the sedimentation velocity and mechanical fragility of acid phosphatase bearing particles increase with the duration of Jectofer treatment and that iron accumulates in the mitochondrial and nuclear fractions. Rate sedimentation studies confirmed the change in sedimentation velocity, which was shown to be due in part to a marked increase in particle density. Quantitative morphological analysis of liver M + L and N + M + L fractions revealed a nearly complete absence of pericanalicular dense bodies after 6–7 days of Jectofer treatment. In these fractions a new type of particle containing fine electron dense granules was seen. The mean volume of these particles was decreased and their number increased when compared to dense bodies but the general morphology and overall size distribution of the two particle classes were similar. In animals given both Jectofer and glucagon, autophagic vacuole formation was similar to that found in animals receiving only glucagon. However, the increase in osmotic fragility of acid phosphatase bearing particles usually seen after glucagon administration occurred at a significantly slower rate. Examination of paniculate fractions revealed the presence of autophagic vacuoles with (autolysosomes) and without (autophagosomes) fine dense granules. The number of autolysosomes and their relative proportion in the autophagic vacuole population were correlated with an increase in the osmotic fragility of the acid phosphatase bearing particles in the same fraction. Organelle degeneration was observed more frequently in autolysosome profiles. These results support the contention that iron labeling can be used to separate the principal particle populations participating in the autophagic response induced by glucagon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.