Abstract
Since the development of the HP memristor, much attention has been paid to studies of memristive devices and applications, particularly memristor-based nonvolatile semiconductor memory. Owing to its unique properties, theoretically, one could restart a memristor-based computer immediately without the need for reloading the data. Further, current memories are mainly binary and can store only ones and zeros, whereas memristors have multilevel states, which means a single memristor unit can replace many binary transistors and realize higher-density memory. It is believed that memristors can also implement analog storage besides binary and multilevel information memory. In this paper, an implementation scheme for analog memristive memory is considered. A charge-controlled memristor model is derived and the corresponding SPICE model is constructed. Special write and read operations are demonstrated through numerical analysis and circuit simulations. In addition, an audio analog record/play system using a memristor crossbar array is designed. This system can provide great storage capacity (long recording time) and high audio quality with a simple small circuit structure. A series of computer simulations and analyses verify the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.