Abstract

Generalized continuous wave synthetic aperture radar (GCW-SAR) is a promising new imaging radar system since it applies the full-duplex (FD) transmission technique to achieve continuous signaling in order to overcome several fundamental limitations of the conventional pulsed SARs. As in any FD wireless communication system, self-interference (SI) is also a key problem which can impact on the GCW-SAR system. In this paper, the analog least mean square (ALMS) loop in the radio frequency domain is adopted to cancel the SI for a GCW-SAR system with periodic chirp signaling. The average residual SI power after the ALMS loop is analyzed theoretically by a stationary analysis. It is found that the ALMS loop not only works with random signals in general FD communication systems, but also works well with the periodic signal in GCW-SAR systems. Simulation results show that over 45 dB SI cancellation can be achieved by the ALMS loop which ensures the proper operation of the GCW-SAR system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.