Abstract

We proposed in this research a novel two-dimensional network based on the frog visual system, with a motion detection function and a newly developed simple-shape recognition function, for use in object discrimination by integrated circuits. Specifically, the network mimics the signal processing of the small-field cell in a frog brain, consisting of the tectum and thalamus, which generates signals of the motion and simple shape of an object. The proposed network is constructed from simple analog complementary metal oxide semiconductor (CMOS) circuits; a test chip of the proposed network was fabricated with a 1.2 μm CMOS process. Measurements on the chip clarified that the proposed network can generate signals of the moving direction, velocity, and simple shape, as well as perform information processing of the small-field cell. Results with the simulation program with integrated circuit emphasis (SPICE) showed that the analog circuits used in the network have low power consumption. Applications of the proposed network are expected to realize advanced vision chips with functions such as object discrimination and target tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call