Abstract

We propose high-fidelity analog ghost diffraction and transmission through scattering media in free space using a series of 2D randomly-distributed binary patterns. The proposed method utilizes ghost diffraction to enable high-fidelity free-space optical transmission through scattering media. Any type of ghosts, e.g., analog signal, can be encoded into a series of 2D randomly-distributed binary patterns to serve as information carriers. After the generated 2D randomly-distributed binary patterns are sequentially embedded into spatial light modulator and are illuminated to propagate through scattering media in free space, a single-pixel detector is used to collect light intensity at the receiving end and high-fidelity signals can be retrieved without any complex post-processing algorithm. The proposed method possesses high robustness for high-fidelity free-space optical transmission through scattering media, and different wavelengths and different propagation distances can be flexibly used for free-space optical transmission. The method could open up an avenue towards many applications, e.g., free-space optical data transmission and communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.