Abstract
The increase of analog and mixed-signal circuitry in modern RF and microwave integrated circuits demands for improved analog fault diagnosis methods. While digital fault diagnosis is well established, the analog counterpart is relatively much less mature due to the intrinsic complexity in analog faults and their corresponding identification. In this work, we present an artificial neural network (ANN) modeling approach to efficiently emulate the injection of analog faults in RF circuits. The resulting meta-model is used for fault identification by applying an optimization-based process using a constrained parameter extraction formulation. The proposed methodology is illustrated by a faulty analog CMOS RF circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.