Abstract
The tensile strength of small dusty bodies in the solar system is determined by the interaction between the composing grains. In the transition regime between small and sticky dust (µm) and non cohesive large grains (mm), particles still stick to each other but are easily separated. In laboratory experiments we find that thermal creep gas flow at low ambient pressure generates an overpressure sufficient to overcome the tensile strength. For the first time it allows a direct measurement of the tensile strength of individual, very small (sub)-mm aggregates which consist of only tens of grains in the (sub)-mm size range. We traced the disintegration of aggregates by optical imaging in ground based as well as microgravity experiments and present first results for basalt, palagonite and vitreous carbon samples with up to a few hundred Pa. These measurements show that low tensile strength can be the result of building loose aggregates with compact (sub)-mm units. This is in favour of a combined cometary formation scenario by aggregation to compact aggreates and gravitational instability of these units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.