Abstract

Algorithms for intelligent drone flights based on sensor fusion are usually implemented using conventional digital computing platforms. However, alternative energy-efficient computing platforms are required for robust flight control in a variety of environments to reduce the burden on both the battery and computing power. In this study, we demonstrated an analog–digital hybrid computing platform based on SnS2 memtransistors for low-power sensor fusion in drones. The analog Kalman filter circuit with memtransistors facilitates noise removal to accurately estimate the rotation of the drone by combining sensing data from the gyroscope and accelerometer. We experimentally verified that the power consumption of our hybrid computing-based Kalman filter is only 1/4th of that of the traditional software-based Kalman filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.