Abstract

This study compared the filtering effects on the auditory evoked potential of zero and standard phase shift digital filters (the former was a mathematical approximation of a standard Butterworth filter). Conventional filters were found to decrease the height of the evoked response in the majority of waveforms compared to zero phase shift filters. A 36-dB/octave zero phase shift high pass filter with a cutoff frequency of 100 Hz produced a 16% reduction in wave amplitude compared to the unfiltered control. A 36-dB/octave, 100-Hz standard phase shift high pass filter produced a 41% reduction, and a 12-dB/octave, 150-Hz standard phase shift high pass filter produced a 38% reduction in wave amplitude compared to the unfiltered control. A decrease in the mean along with an increase in the variability of wave IV/V latency was also noted with conventional compared to zero phase shift filters. The increase in the variability of the latency measurement was due to the difficulty in waveform identification caused by the phase shift distortion of the conventional filter along with the variable decrease in wave latency caused by phase shifting responses with different spectral content. Our results indicated that a zero phase shift high pass filter of 100 Hz was the most desirable filter studied for the mitigation of spontaneous brain activity and random muscle artifact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.