Abstract

U ovoj studiji istražena je klasifikacija usjeva i tla korištenjem algoritma strojnoga učenja Random Forest, temeljenoga na crveno-zeleno-plavoj (RGB) i multispektralnoj kameri integriranoj na bespilotnome zrakoplovu. Područje istraživanja obuhvaćalo je dva podskupa poljoprivredne čestice kukuruza dimenzija 10 x 10 m u blizini Koške. Najveća ukupna točnost klasifikacije postignuta je u kombinaciji rubnoga crvenog (RE), bliskoga infracrvenog (NIR) kanala i indeksa normalizirane vegetacijske razlike (NDVI) u oba podskupa, s ukupnom točnošću od 99,8 %, odnosno 91,8 %. Provedena analiza pokazala je da je RGB kamera postigla dovoljnu točnost i da je prihvatljivo rješenje za klasifikaciju tla i vegetacije. Međutim, multispektralna kamera i spektralna analiza omogućile su detaljniju analizu, prvenstveno za spektralno slična područja. Ovaj je postupak temelj i za izračun gustoće usjeva i za otkrivanje korova s pomoću bespilotnih zrakoplova. Kako bi se osigurala učinkovitost klasifikacije usjeva u praktičnoj primjeni, potrebno je dodatno uključiti klase korova u trenutačnu klasu vegetacije i podijeliti ih na klase usjeva i korova.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.