Abstract

Abstract The clustering of components of a signaling pathway at a specific subcellular location raises the local concentration of the appropriate messengers and serves to amplify the signal. The cAMP dependent-protein kinase (PKA) pathway is regulated by compartmentalization of its components. A-kinase anchoring proteins (AKAPs) tether PKA to specific subcellular sites, thus presumably increasing substrate specificity. Phosphorylation of the type II regulatory subunit of PKA (RII) increases its affinity for AKAPs in vitro (1). The purpose of this study was to investigate whether altering the phosphorylation state of RII in live cells changes its affinity for an AKAP. Specifically, we investigated the binding kinetics between Ht31, a peptide containing the PKA binding portion of an AKAP from human thyroid (2), and RII, in response to PKA activators or inhibitors. Fluorescence resonance energy transfer (FRET) was used to monitor binding events between RII and the catalytic subunit (C) of PKA, Ht31, or Ht31P, a mutated form of Ht31 which does not bind RII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.