Abstract

Customer loyalty is an important factor to the survival of a company. The problem facting today is related to the descreasing number of customer loyalty that happened to PT MNC Play. If this is allowed to continue it is not impossible this will endanger the continuity of the company’s business. Keep in mind the factors that cause customers to have loyal and disloyal status, data mining classification techniques can be used to classify loyal and disloyal customers. Many data mining classification algorithms can be used, so it needs to be comparative to know the accuracy of each algorithm, the algorithem used is C4.5 and Naïve Bayes. The data used were 28,899MNC Play customer of Semarang City. The results of the classification process were evaluated using cross validation, confusion matrix, ROC Curve to find the more accurate data mining classification algorithm to determine loyal and disloyal customers. Keywords: Classification, Customers Loyalty, Naïve Bayes, C4.5.

Highlights

  • Loyalitas pelanggan adalah kesetiaan seseorang terhadap suatu barang atau jasa tertentu.Tingkat loyalitas pelanggan yang mereka miliki merupakan aset perusahaan yang berharga nilainya

  • Customer loyalty is an important factor to the survival of a company

  • The problem facting today is related to the descreasing number of customer loyalty

Read more

Summary

Introduction

Loyalitas pelanggan adalah kesetiaan seseorang terhadap suatu barang atau jasa tertentu. Tingkat loyalitas pelanggan yang mereka miliki merupakan aset perusahaan yang berharga nilainya. Loyalitas pelanggan akan menjadi kunci sukses, tidak hanya dalam jangka pendek tetapi keunggulan bersaing secara berkelanjutan. MNC Play adalah salah satu perusahaan penyedia jasa internet provider di kota Semarang. Masalah loyalitas pelanggan yang terjadi di MNC Play saat ini adalah banyaknya pelanggan yang sudah tidak menggunakan layanan internet dari MNC Play dan memilih tidak berlangganan lagi. Received August 08, 2020; Revised January 05, 2021; Accepted January 27, 2021

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.