Abstract
The efficacy of antidepressant drugs with serotonergic, noradrenergic, or dual reuptake inhibition was evaluated in reversing carrageenan-induced thermal hyperalgesia and mechanical allodynia in rats. Duloxetine (1–30 mg/kg, i.p.), a balanced serotonergic–noradrenergic reuptake inhibitor (SNRI), was equiefficacious and more potent than the SNRI venlafaxine (3–100 mg/kg, i.p.) in reversing both thermal hyperalgesia and mechanical allodynia induced by carrageenan. In addition, the selective noradrenergic reuptake inhibitors (NRIs) thionisoxetine (0.03–10 mg/kg, i.p.) and desipramine (1–30 mg/kg, i.p.) also produced complete reversals of carrageenan-induced thermal hyperalgesia. However, only thionisoxetine exhibited a greater than 80% reversal of the carrageenan-induced mechanical allodynia. In contrast, the selective serotonergic reuptake inhibitors (SSRIs) paroxetine, sertraline, and fluoxetine (0.3–10 mg/kg i.p.) had little or no effect in the carrageenan model. In order to understand whether the observed enhanced effectiveness of the dual SNRIs was due to a possible synergism between serotonergic and noradrenergic reuptake inhibition, the effects of the NRI thionisoxetine alone and in combination with an inactive dose of the SSRI fluoxetine were determined. In the presence of fluoxetine, the potency of thionisoxetine in reversing carrageenan-induced hyperalgesia and allodynia was significantly increased by approximately 100-fold and brain concentrations of thionisoxetine were increased by 1.1- to 5-fold. The present data indicate fluoxetine pharmacodynamically potentiated the analgesic effects of thionisoxetine over and above a metabolic interaction between these two drugs. The present findings thus indicate that, in the carrageenan model, dual serotonergic–noradrenergic reuptake inhibition by dual SNRIs, or SSRI–NRI combinations, produces synergistic analgesic efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.