Abstract
'Conventional' protocols of high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to M1 can produce analgesia. Theta burst stimulation (TBS), a novel rTMS paradigm, is thought to produce greater changes in M1 excitability than 'conventional' protocols. After a preliminary experiment showing no analgesic effect of continuous or intermittent TBS trains (cTBS or iTBS) delivered to M1 as single procedures, we used TBS to prime a subsequent session of 'conventional' 10 Hz-rTMS. In 14 patients with chronic refractory neuropathic pain, navigated rTMS was targeted over M1 hand region, contralateral to painful side. Analgesic effects were daily assessed on a visual analogue scale for the week after each 10 Hz-rTMS session, preceded or not by TBS priming. In an additional experiment, the effects on cortical excitability parameters provided by single- and paired-pulse TMS paradigms were studied. Pain level was reduced after any type of rTMS procedure compared to baseline, but iTBS priming produced greater analgesia than the other protocols. Regarding motor cortex excitability changes, the analgesic effects were associated with an increase in intracortical inhibition, whatever the type of stimulation, primed or non-primed. The present results show that the analgesic effects of 'conventional' 10 Hz-rTMS delivered to M1 can be enhanced by TBS priming, at least using iTBS. Interestingly, the application of cTBS and iTBS did not produce opposite modulations, unlike previously reported in other systems. It remains to be determined whether the interest of TBS priming is to generate a simple additive effect or a more specific process of cortical plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.