Abstract

BackgroundDonepezil, a cholinesterase inhibitor approved in Alzheimer’s disease, has demonstrated analgesic and preventive effects in animal models of oxaliplatin-induced neuropathy. To improve the clinical interest of donepezil for the management and prevention of chemotherapy-induced peripheral neuropathy (CIPN), a broader validation is required in different animal models of CIPN. Methods: using rat models of CIPN (bortezomib, paclitaxel, and vincristine), the analgesic and preventive efficacies of donepezil were evaluated on tactile, cold and heat hypersensitivities. The involvement of muscarinic M2 acetylcholine receptors (m2AChRs) in analgesic effects was investigated at the spinal level. The absence of interference of donepezil with the cytotoxic effect of chemotherapy has been controlled in cancer cell lines. Results: the analgesic efficacy of donepezil was demonstrated for all CIPN models, mainly on tactile hypersensitivity (maximal efficacy at 60 min, p < 0.05 vs. vehicle group). This effect was suppressed by an intrathecal injection of methoctramine (m2AChR antagonist). Regarding preventive effects, donepezil limited tactile hypersensitivity induced by paclitaxel, but not for other CIPN models. Donepezil did not modify the viability of cancer cells or the efficacy of anticancer drugs. Conclusions: donepezil had a broad analgesic effect on animal models of CIPN and this effect involved spinal m2AChRs. This work validates the repositioning of donepezil in the management of CIPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call