Abstract

ObjectiveTo determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. MethodsHypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. ResultsBy 10days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3±2.4mmHg) compared to control mice (121.7±2.7mmHg; n=18, P<0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by ∼20mmHg (n=16, P<0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced (∼30%) renal expression of some (CCL5, CCL2; n=7–8; P<0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7–8, P>0.05). Anakinra reduced renal collagen content (n=6, P<0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P<0.001) that accompanied 1K/DOCA/salt-induced hypertension. ConclusionDespite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.