Abstract

Sepsis is a multiple organ dysfunction syndrome (MODS) induced by infection, which significantly threatens public health. The overactivation of inflammatory reactions and oxidative stress participate in the pathogenesis of sepsis. Anagliptin, a novel anti-diabetic agent widely applied for the treatment of type II diabetes, has been recently claimed to possess anti-inflammatory properties. Here, the protective effects of anagliptin on lipopolysaccharide (LPS)- stimulated macrophages will be checked to explore the possible pharmacological property of anagliptin on sepsis. The state of oxidative stress was dramatically activated by LPS, accompanied by the upregulation of toll-like receptor 4 (TLR4) and high mobility group box-1 (HMGB-1), as well as the elevated expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO). After treatment with anagliptin, the state of oxidative stress in macrophages was alleviated, with the downregulation of TLR4, HMGB-1, iNOS, and the declined release of NO. The excessive secretion of inflammatory factors, activation of the NF-κB pathway, and promoted expression level of receptor-interacting protein 1 (RIP1) were observed in LPS- stimulated macrophages, all of which were greatly reversed by the introduction of anagliptin. Lastly, the protective properties of anagliptin on LPS- treated macrophages, including the inhibitory effects on inflammation and the NF-κB pathway, were dramatically abolished by the overexpression of RIP1 in macrophages. Collectively, anagliptin prevented LPS-induced inflammation and activation of P338D1 macrophages by repressing the expression level of RIP1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call