Abstract

We aimed to investigate the reliability and validity of sweat lactate threshold (sLT) measurement based on the real-time monitoring of the transition in sweat lactate levels (sLA) under hypoxic exercise. In this cross-sectional study, 20 healthy participants who underwent exercise tests using respiratory gas analysis under hypoxia (fraction of inspired oxygen [FiO2], 15.4 ± 0.8%) in addition to normoxia (FiO2, 20.9%) were included; we simultaneously monitored sLA transition using a wearable lactate sensor. The initial significant elevation in sLA over the baseline was defined as sLT. Under hypoxia, real-time dynamic changes in sLA were successfully visualized, including a rapid, continual rise until volitionary exhaustion and a progressive reduction in the recovery phase. High intra- and inter-evaluator reliability was demonstrated for sLT’s repeat determinations (0.782 [0.607–0.898] and 0.933 [0.841–0.973]) as intraclass correlation coefficients [95% confidence interval]. sLT correlated with ventilatory threshold (VT) (r = 0.70, p < 0.01). A strong agreement was found in the Bland–Altman plot (mean difference/mean average time: − 15.5/550.8 s) under hypoxia. Our wearable device enabled continuous and real-time lactate assessment in sweat under hypoxic conditions in healthy participants with high reliability and validity, providing additional information to detect anaerobic thresholds in hypoxic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call