Abstract

Nanoscale zerovalent iron (nZVI) is commonly used in advanced groundwater remediation processes. Here, we present a combined experimental and computational approach to elucidate the mechanism and kinetics of the reaction of nZVI with water under anaerobic conditions, which represents the basic reaction controlling the stability of nZVI in groundwater. The reaction kinetics was monitored at temperatures of 25 and 80 °C by 57Fe Mossbauer spectroscopy on frozen dispersion samples. The experimentally determined rate constant for reaction of nZVI with water at 25 °C was 1.14 × 10–3 h–1; the activation barrier measured for 60 nm sized nanoparticles (ΔG⧧298K(aq) = 26.3 kcal/mol) fits the range delineated by two limiting theoretical models from advanced quantum chemical calculations: rate-limiting activation barriers of 31.6 and 18.0 kcal/mol depending on the computational model, i.e., an iron atom and an infinite iron surface, respectively. The computations indicated a two-step reaction mechanism involving two o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.