Abstract
Anaerobic degradation of (4-hydroxy)phenylacetate in denitrifying Pseudomonas sp. was investigated. Evidence is presented for alpha-oxidation of the coenzyme A (CoA)-activated carboxymethyl side chain, a reaction which has not been described. The C6-C2 compounds are degraded to benzoyl-CoA and furtheron to CO2 via the following intermediates: Phenylacetyl-CoA, phenylglyoxylate, benzoyl-CoA plus CO2; 4-hydroxyphenylacetyl-CoA, 4-hydroxyphenylglyoxylate, 4-hydroxybenzoyl-CoA plus CO2, benzoyl-CoA. Trace amounts of mandelate possibly derived from mandelyl-CoA were detected during phenylacetate degradation in vitro. The reactions are catalyzed by (i) phenylacetate-CoA ligase which converts phenylacetate to phenylacetyl-CoA and by a second enzyme for 4-hydroxyphenylacetate; (ii) a (4-hydroxy)-phenylacetyl-CoA dehydrogenase system which oxidizes phenylacetyl-CoA to (4-hydroxy)phenylglyoxylate plus CoA; and (iii) (4-hydroxy)phenylglyoxylate: acceptor oxidoreductase (CoA acylating) which catalyzes the oxidative decarboxylation of (4-hydroxy)phenylglyoxylate to (4-hydroxy)benzoyl-CoA and CO2. (iv) The degradation of 4-hydroxyphenylacetate in addition requires the reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA, catalyzed by 4-hydroxybenzoyl-CoA reductase (dehydroxylating). The whole cell regulation of these enzyme activities supports the proposed pathway. An ionic mechanism for anaerobic alpha-oxidation of the CoA-activated carboxymethyl side chain is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.