Abstract

Owing to the development of urbanization, the amount of sewage sludge generated through biological activated sludge process has increased dramatically. Anaerobic fermentation of sludge is recognized as an expedient and efficient treatment process, widely applied for biogas generation, resource recovery, and volatile fatty acid production. Volatile fatty acids are one of the most widely used carbon sources and have great use in biological nutrient removals. Volatile fatty acids production in anaerobic sludge fermentation is affected by sludge properties, metabolic pathways, and operating parameters. This paper aims to present an overview of the recent advancement in volatile fatty acids production from waste activated sludge. Standalone and hybrid pretreatment methods prior to the sludge fermentation were introduced and assessed based on VFAs accumulation rate and system performance. In addition, different metabolic steps involved in anaerobic fermentation (i.e. hydrolysis, acidification, and methanogenesis) were deeply evaluated. More importantly, the effects of humic substances were evaluated, among which, the electron transfer, the enzyme activity of microbial species, and the interaction between exogenous electron transporters and humic substances were illustrated. Furthermore, the influence of nitrogen and phosphorus ingredients in sludge fermentation and volatile fatty acids production was introduced. It was found that the additives and pretreatment of waste activated sludge are energetically preferred for the hydrolysis improvement and accelerating the volatile fatty acids accumulation. It was concluded that different structures of humic substances may have different effect on the fermentation process and volatile fatty acids production. The synergistic addition of hydrolytic enzymes assisted to reverse the negative effect of humic acids in some cases, and mitigated the adverse effect of humic substances on the inhibition of bacterial growth. The composition and properties of waste activated sludge may limit its biodegradability and hamper the volatile fatty acids production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call