Abstract

Abstract Anaerobic fermentation-based technologies are used for treating organic residues, and producing high value-added products, such as solvents, gases, and organic acids. Among several organic acids, n-caproic acid can be used as antimicrobial agent, additive in animal feed, flavor additive, and feedstock for chemical and biofuel industries. n-Caproic acid formation occurs through a carboxylic acid chain elongation process, which uses reverse β-oxidation of acetic and/or n-butyric acid, and ethanol or lactic acid as an electron donor. This review addresses important issues in commercial n-caproic acid production: metabolic pathways, kinetics and thermodynamics, substrates, reactors, inhibition of competing biological activities, pH, and acid extraction. Additionally, a mathematical model to describe the reverse β-oxidation kinetics was evaluated from existing literature. Current investigations show a wide range of n-caproic acid production rates (3.0–55.8 g/(L·d)), using different open cultures, fermentation conditions, and methods for inhibiting the methanogenesis. Clostridium kluyveri presence and a dominance of the Clostridium spp. were identified as determinant when ethanol was provided as electron donor. Continuous n-caproic acid extraction through pertraction is a promising technology, which combines selective extraction and enhanced production rates. However, confirming the industrial feasibility of this process requires further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call