Abstract
Anaerobic digestion is used for the treatment of animal manure by generating biogas. Heavy metals cause environmental pollutions and co-select for antimicrobial resistance. We evaluated the impact of mesophilic anaerobic digestion of cattle manure (CM), swine manure (SM) and poultry litter (PL) on the concentrations of seven tetracycline [tet(A), tet(B), tet(G), tet(M), tet(O), tet(Q), and tet(W)], macrolide [erm(B)], methicillin (mecA and mecC), copper (copB, pcoA, pcoD, and tcrB) and zinc (czrC) resistance genes, and three bacterial species (E. coli, Enterococcus spp. and Staphylococcus aureus). The total bacterial population and total abundance of the seven tet genes significantly increased in the three manure types after digestion. Concentration of tet(M) was strongly correlated with that of erm(B) and enterococci. As concentration of tetracyclines declined during anaerobic digestion, that of four tet genes (A, B, Q, and W) and 16S rRNA increased, that of tet(M) decreased, and that of tet(G) and tet(O) did not change. Concentrations of copB and pcoA did not change; while that of pcoD did not change in the PL, it increased in the SM and CM. While the concentration of enterococci remained unchanged in CM, it significantly increased in the PL and SM. Concentrations of tcrB significantly increased in the three manure types. While concentrations of S. aureus significantly increased in the CM and PL, that of SM was not affected. Concentrations of mecC significantly increased in all manure types after digestion; while mecA concentrations did not change in the SM, they significantly increased in CM and PL. While concentration of czrC remained low in the CM, it increased in the PL but declined in the SM. In conclusion, while mesophilic anaerobic digestion of animal manure decreased concentration of tetracyclines, it increased the concentrations of total bacteria, tet genes, E. coli, enterococci and S. aureus and methicillin resistance genes. It did not have any effect on concentrations of heavy metals; concentrations of heavy metal resistance genes either increased or remained unaffected depending on the animal species. This study showed the need for post-digestion treatments of animal manure to remove bacteria, antibiotic resistance genes, heavy metals and their resistance genes.
Highlights
Antibiotics play a significant role in food animals to treat, prevent and control bacterial infections
Poultry litter showed the greatest increase in the mean abundances of the 16S rRNA genes and its concentrations were higher than those of cattle manure (CM) or swine manure (SM) starting on day 4 of anaerobic digestion (AD)
While concentrations of E. coli significantly increased in CM and poultry litter (PL) following AD, in SM it did not change from day 0 level
Summary
Antibiotics play a significant role in food animals to treat, prevent and control bacterial infections. Antibiotics can exert selection pressure on bacteria (Pruden et al, 2006) resulting in the propagation and spread of ARB via hydrologic processes beyond the point of use, resulting in environmental and public health concerns (Peak et al, 2007). Antibiotic resistant bacteria can cause severe, difficult to treat, and sometimes fatal infections, with groundwater serving as a potential source of antimicrobial resistant pathogens in the human food chain (Chee-Sanford et al, 2001; Campagnolo et al, 2002) or when animal manure is land applied as soil amendment (Miller et al, 2019). Manure from livestock and poultry farming plays an important role in the dissemination of ARB and ARGs in the environment when applied as fertilizer on agricultural farms. Cattle and swine manure storage lagoons are known to carry ARGs including various tetracycline resistance (tet) genes (Koike et al, 2007; Peak et al, 2007)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.