Abstract

Anaerobic digestion (AD) is a unit process that integrates beneficially and sustainably into many bioprocesses. This study assesses and compares the production of methane from the biomass of the microalga Scenedesmus sp. and the cyanobacterium Spirulina sp. in batch anaerobic digesters. Anaerobic digestion of whole cell Spirulina resulted in a substantially higher methane productivity (0.18 L CH4 Lreactor −1 day−1) and methane yield (0.113 L CH4 g−1 volatile solids (VS)) compared to the digestion of whole cell Scenedesmus (0.12 L CH4 Lreactor −1 day−1 and 0.054 L CH4 g VS−1). Spirulina, possibly due to a combination of osmotic shock, the filamentous nature of the cells and lower mechanical strength of the non-cellulosic cell wall, was more readily degraded by hydrolytic and acidogenic microorganisms, resulting in the generation of a greater amount of acetic acid. This in turn provided greater substrate for methanogens and hence higher methane yields. In addition, Spirulina cells could be disrupted mechanically more quickly (1 h) than Scenedesmus cells (4 h) in a bead mill. Mechanical pre-treatment improved the final methane yields (L CH4 g VS−1) obtained from digestion of both substrates; however, the improvement was greater for Scenedesmus. Mechanical pre-treatment resulted in a 47 % increase in methane production for Spirulina compared to 76 % increase for Scenedesmus fed digesters. The more substantial increase observed for Scenedesmus was due to the relatively inefficient digestion of the whole, unruptured cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.