Abstract
Anaerobic digestion represents one of several commercially viable processes to convert woody biomass, agricultural wastes, and municipal solid wastes to methane gas, a useful energy source. This process occurs in the absence of oxygen, and is substantially less energy intensive than aerobic biological processes designed for disposal purposes. The anaerobic conversion process is a result of the synergistic effects of various microorganisms, which serve as a consortium. The rate-limiting step of this conversion process has been identified as the hydrolysis of cellulose, the major polymeric component of most biomass and waste feedstocks. Improvements in process economics therefore rely on improving the kinetic and physicochemical characteristics of cellulose degrading enzymes. The most thoroughly studied cellulase enzymes are produced by aerobic fungi, namely Trichoderma reesei. However, the pH and temperature optima of fungal cellulases make them incompatible for use in anaerobic digestion systems, and the major populations of microorganisms involved in cellulase enzyme production under anaerobic digestion conditions are various bacterial producers. The current state of understanding of the major groups of bacterial cellulase producers is reviewed in this paper. Also addressed in this review are recently developed methods for the assessment of actual cellulase activity levels, reflective of the digester "hydrolytic potential," using a series of detergent extractive procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.