Abstract

This work aimed at integrating the anaerobic digestion of food waste (FW) with photosynthetic biogas upgrading at pilot scale in order to obtain a high quality biomethane and a nutrient-laden algal biomass as the main byproducts from FW treatment. The performance of a 100 L anaerobic digester treating food waste integrated via raw biogas and digestate injection with a 1.2 m2 outdoors high-rate algal pond (HRAP) was evaluated. Biogas production in the digester averaged 790 ± 89 mL g VSin-1 (68 ± 8 L d-1) (35 °C, 1 bar) at a loading rate of 0.86 g VS L-1 d-1 and a steady state chemical oxygen demand removal efficiency of 83 ± 7%. The biogas produced (60% CH4 / 39% CO2) was upgraded in a 2.5 L absorption column interconnected with the HRAP via culture broth recirculation at a liquid to biogas ratio of 2, resulting in a maximum CO2 removal efficiency of 90% and a maximum CH4 content of 93.9%. The HRAP, supplied with the centrifuged liquid digestate supplemented with synthetic wastewater (5.0 ± 1.1 L d-1, Total nitrogen (TN) = 793 ± 110 mg N L-1, P-PO43- = 39 ± 19 mg P L-1), supported TN and total phosphorus maximum removal efficiencies of 100% in both cases. Pseudoanabaena sp. and Chlorella vulgaris were identified as the dominant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call