Abstract

There is an increasing interest in integrating aerobic granular sludge (AGS) technology into wastewater industries. Several projects are being performed to cultivate the aerobic granules for continuous flow reactors (AGS-CFR), while there is a scarcity of those projects that investigate the bio-energy recovery from AGS-CFR. This research was designed to examine the digestibility of AGS-CFR. Beyond that, it aimed at defining the role of the granule size on their digestibility. For this purpose, a series of bio-methane potential (BMP) tests have been run at mesophilic conditions. The results showed that AGS-CFR has a lower methane potential (107.43 ± 4.30 NmL/g VS) compared to activated sludge. This may be the result of the high sludge age (30 days) of AGS-CFR. Additionally, the results revealed that the average size of granules is among the main factors that reduce their digestibility, but it does not inhibit it. It was noticed that granules of size >250 μm have a significantly lower methane yield than the smaller ones. Kinetically, it was noticed that the kinetic models with two hydrolysis rates fit well with the methane curve of AGS-CFR. Overall, this work showed that the average size of AGS-CFR characterizes its biodegradability, which in turn defines its methane yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.