Abstract

A new, rod-shaped, Gram-negative, non-sporing sulfate reducer (strain Ani1) was enriched and isolated from marine sediment with aniline as sole electron donor and carbon source. The strain degraded aniline completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Strain Ani1 also degraded aminobenzoates and further aromatic and aliphatic compounds. The strain grew in sulfide-reduced mineral medium supplemented only with vitamin B12 and thiamine. Cells contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P582, but no desulfoviridin. Strain Ani1 is described as a new species of the genus Desulfobacterium D. anilini. Marine enrichments with the three dihydroxybenzene isomers led to three different strains of sulfate-reducing bacteria; each of them could grow only with the isomer used for enrichment. Two strains isolated with catechol (strain Cat2) or resorcinol (strain Re10) were studied in detail. Both strains oxidized their substrates completely to CO2, and contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P 582. Desulfoviridin was not present. Whereas the rod-shaped catechol oxidizer (strain Cat2) was able to grow on 18 aromatic compounds and several aliphatic substrates, the coccoid resorcinol-degrading bacterium (strain Re10) utilized only resorcinol, 2,4-dihydroxybenzoate and 1,3-cyclohexanedion. These strains could not be affiliated with existing species of sulfate-reducing bacteria. A further coccoid sulfate-reducing bacterium (strain Hy5) was isolated with hydroquinone and identified as a subspecies of Desulfococcus multivorans. Most-probable-number enumerations with catechol, phenol, and resorcinol showed relatively large numbers (10(4)-10(6) per ml) of aryl compound-degrading sulfate reducers in marine sediment samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.