Abstract
This study evaluated the co-digestion of domestic wastewater solids (WWS) and food waste (FW) at the bench-scale for Yosemite National Park, California, which operates a 1900 m3/d wastewater treatment plant in El Portal, California. A 35-day biochemical methane potential test was performed on varying amounts of FW as a percentage of total waste (WWS plus FW) on a volatile solids basis (%FW). Specific methane yield and volumetric methane yield increased substantially with increasing %FW. A higher %FW was also associated with slower degradation kinetics but higher methane content in biogas. The 75 %FW treatment had relatively rapid kinetics, a high cumulative specific methane yield (453 mL CH4/g VS), and an elevated methane content in biogas, and is suggested as an upper limit %FW mixture for full-scale co-digestion. This, coincidently, is near the estimated ratio of WWS and FW production at the Park (70 %FW). Co-digesting the Park’s feedstock of FW with WWS in existing anaerobic digestion facilities could increase methane production five-fold. Combusting this methane in a combined heat and power system would produce about twice the energy needed to heat anaerobic digestors and power the treatment plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.