Abstract

Sugarcane press mud (SPM) has a high potential to produce renewable energy through anaerobic digestion (AD); however, hydrolysis is the limiting stage of the process due to the presence of slowly biodegradable compounds. An alternative that can improve this deficiency is anaerobic codigestion (AcoD). In this investigation, the monodigestion of SPM and its AcoD with food waste (FW) were evaluated through the biochemical methane potential (BMP) test, and kinetic parameters were analyzed through the analysis of the kinetic models of first order and modified Gompertz. This study showed that the AcoD of SPM with FW improved the hydrolysis stage, increased methane (CH4) yield, improved the stability of the process, and presented synergistic effects. As regards the hydrolysis stage, the hydrolysis constant was increased, and the lag phase was reduced. The monodigestion of SPM (SPM : FW 100 : 0) showed an increase of 9% with the addition of external nutrients solution, while that of AcoD in the SPM : FW 80 : 20 ratio showed the highest CH4 yield, with increments of 12 and 22% in comparison with the monodigestion of SPM under WN and NN conditions, respectively. It is even possible to add up to 40% of FW (SPM : FW 60 : 40) and achieve an increase of 5% compared to the monodigestion of SPM under the NN condition. The synergistic effects obtained in this study showed that the incorporation of FW, in the substrates ratios evaluated, would improve the AD of the SPM without addition of external nutrients solution, which represents economic and environmental benefits of implementing this alternative at full scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.