Abstract

Rheology is known to have an impact on the performance of digesters, but the effect of additional substrates (co-digestion) is poorly understood. The main objective of this study was to investigate the effects of the addition of cellulose, protein and lipids to substrates on the rheological behaviour and biogas production of the mixture of primary sludge (PS) and waste-activated sludge (WAS) in a batch system. A mixture of PS and WAS to form the main substrate was anaerobically co-digested with different types of organic matter (cellulose, protein and lipids) as co-substrates at different co-substrate to main substrate ratios of 2–8 (wt%) under mesophilic conditions and below ammonia inhibition levels. Yield stress (τy) and the flow consistency index (k) of the combined feed in the case of cellulose and protein were significantly dependent on the amount of co-substrate added, while there was an insignificant impact on these properties when lipids were added. Cellulose significantly increased τy and k in the feed, which resulted in poor fluidity and the improper homogenisation of the digester content, and consequently decreased the biogas yield. In contrast, the biogas yield was improved through the addition of 2% to 6% protein despite an increase in τy and k of the feed, but the methane yield decreased at 7% and 8% levels of protein concentration. This observation indicates that the threshold for τy and k of the digester media depends on the organic nature and digestibility of the substrate. There was no significant impact on the flow properties of the initial mixture when lipids were added, and their addition increased the biogas yield. A first-order kinetic reaction model was used for predicting the yield of methane from these digesters. The rate constant values revealed an increasing trend, with the highest for protein then lipids then cellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.