Abstract

For many years anaerobic biological processes were reputed to be more sensitive than aerobic processes to toxic substances such as chlorinated aliphatic hydrocarbons (CAH) and thus a poor choice for treating water containing these compounds. This was especially true for water containing perchloroethylene (PCE) or trichloroethylene (TCE) because vinyl chloride, a human carcinogen, is produced when these two compounds are degraded anaerobically. Aerobic treatment with organisms containing oxygenase enzyme systems, which could fortuitously degrade a wide variety of chlorinated aliphatics (but not PCE), was favored. Recently, however, several enrichments and organisms have been isolated that will convert PCE and TCE into ethene and ethane, as shown by field data. Because of this evidence, anaerobic processes are now considered a significant alternative treatment for CAH contamination. Recent work at the University of Iowa, Iowa City, has focused on the effect of mixtures of CAHs on biotransformation of individual organic compounds and the potential for a combined methanogen‐iron (Fe(0)) system to improve CAH bioremediation. At the concentration ranges tested, the presence of a mixture of CAHs seems to decrease rate of transformation of individual organics. However, there are important exceptions; in some cases a mixture of CAHs seems to facilitate transformation of an individual organic compound. Combination of an active methanogenic population with Fe(0) increases the rate and extent of transformation of carbon tetrachloride and chloroform. Results with PCE and 1, 1, 1‐trichloroethane are less clear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call