Abstract

Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.