Abstract
Availability of fixed nitrogen is a pivotal driver on primary productivity in the oceans, thus the identification of key processes triggering nitrogen losses from these ecosystems is of major importance as they affect ecosystems function and consequently global biogeochemical cycles. Denitrification and anaerobic ammonium oxidation coupled to nitrite reduction (Anammox) are the only identified marine sinks for fixed nitrogen. The present study provides evidence indicating that anaerobic ammonium oxidation coupled to the reduction of sulfate, the most abundant electron acceptor present in the oceans, prevails in marine sediments. Tracer analysis with 15N-ammonium revealed that this microbial process, here introduced as Sulfammox, accounts for up to 5 μg 15N2 produced g-1 day-1 in sediments collected from the eastern tropical North Pacific coast. Raman and X-ray diffraction spectroscopies revealed that elemental sulfur and sphalerite (ZnFeS) were produced, besides free sulfide, during the course of Sulfammox. Anaerobic ammonium oxidation linked to Fe(III) reduction (Feammox) was also observed in the same marine sediments accounting for up to 2 μg 15N2 produced g-1 day-1. Taxonomic characterization, based on 16S rRNA gene sequencing, of marine sediments performing the Sulfammox and Feammox processes revealed the microbial members potentially involved. These novel nitrogen sinks may significantly fuel nitrogen loss in marine environments. These findings suggest that the interconnections among the oceanic biogeochemical cycles of N, S and Fe are much more complex than previously considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.