Abstract

The majority of beef cattle in the United States often receive at least one anabolic implant resulting in improved growth, feed efficiency, and environmental and economic sustainability. However, the physiological and molecular mechanisms through which anabolic implants increase skeletal muscle growth of beef cattle remain elusive. The objective of this study was to identify transcriptional changes occurring in skeletal muscle of steers receiving anabolic implants containing different steroid hormones. Forty-eight steers were stratified by weight into 1 of 4 (n = 12/treatment) implant treatment groups: (1) estradiol (ImpE2; 25.7 mg E2; Compudose, Elanco Animal Health, Greenfield, IN), (2) trenbolone acetate (ImpTBA; 200 mg TBA; Finaplix-H, Merck Animal Health, Madison, NJ), (3) combination (ImpETBA; 120 mg TBA + 24 mg E2; Revalor-S, Merck Animal Health), or (4) no implant (CON). Skeletal muscle biopsies were taken from the longissimus 2 and 10 d post-implantation. The mRNA abundance of 94 genes associated with skeletal muscle growth was examined. At 10 d post-implantation, steers receiving ImpETBA had greater (P = 0.02) myoblast differentiation factor 1 transcript abundance than CON. Citrate synthase abundance was increased (P = 0.04) in ImpETBA steers compared to CON steers. In ImpE2 steers 10 d post-implantation, muscle RING finger protein 1 decreased (P = 0.05) compared to CON steers, and forkhead box protein O4 decreased (P = 0.05) in ImpETBA steers compared to CON steers. Interleukin-6 abundance tended to be increased (P = 0.09) in ImpE2 steers compared to both ImpETBA and CON steers. Furthermore, interleukin-10 mRNA abundance tended to be increased (P = 0.06) in ImpTBA steers compared to ImpETBA steers. Leptin receptor abundance was reduced (P = 0.01) in both ImpE2 and ImpTBA steers when compared to CON steers. Abundance of phosphodiesterase 4B was increased (P = 0.04) in ImpTBA steers compared to CON steers 2 d post-implantation. Taken together, the results of this research demonstrate that estradiol increases skeletal muscle growth via pathways related to nutrient partitioning and mitochondria function, while trenbolone acetate improves steer skeletal muscle growth via pathways related to muscle growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.