Abstract
Anabelian geometry with etale homotopy types generalizes in a natural way classical anabelian geometry with etale fundamental groups. We show that, both in the classical and the generalized sense, any point of a smooth variety over a field k which is finitely generated over Q has a fundamental system of (affine) anabelian Zariski-neighbourhoods. This was predicted by Grothendieck in his letter to Faltings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.