Abstract

Vehicular fog computing enabled by the Fifth Generation (5G) has been on the rise recently, providing real-time services among automobiles in the field of smart transportation by improving road traffic safety and enhancing driver comfort. Due to the public nature of wireless communication channels, in which communications are conveyed in plain text, protecting the privacy and security of 5G-enabled vehicular fog computing is of the utmost importance. Several existing works have proposed an anonymous authentication technique to address this issue. However, these techniques have massive performance efficiency issues with authenticating and validating the exchanged messages. To face this problem, we propose a novel anonymous authentication scheme named ANAA-Fog for 5G-enabled vehicular fog computing. Each participating vehicle’s temporary secret key for verifying digital signatures is generated by a fog server under the proposed ANAA-Fog scheme. The signing step of the ANAA-Fog scheme is analyzed and proven secure with the use of the ProfVerif simulator. This research also satisfies privacy and security criteria, such as conditional privacy preservation, unlinkability, traceability, revocability, and resistance to security threats, as well as others (e.g., modify attacks, forgery attacks, replay attacks, and man-in-the-middle attacks). Finally, the result of the proposed ANAA-Fog scheme in terms of communication cost and single signature verification is 108 bytes and 2.0185 ms, respectively. Hence, the assessment metrics section demonstrates that our work incurs a little more cost in terms of communication and computing performance when compared to similar studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call