Abstract

In this paper, we describe the results of the study of an MGA-95 semipermeable composite membrane with amorphous and crystalline regions, considering the effect of the three processes – migration, diffusion and fluid convection of solute and solvent. It was found that during swelling the supramolecular structure of the membrane material undergoes changes caused by deformation of the crystalline and amorphous regions of the membrane sample. The data on the amorphous regions for air-dry, water-saturated and working semipermeable membrane samples were analyzed. The comparative analysis of the diffraction patterns of an MGA-95 membrane showed that the external impact does not change the intramolecular structure of the membrane. Using the experimental data and the method of small-angle X-ray scattering we calculated the size of pores for MGA-95 and ESPA composite membranes. The findings led to the conclusion about the relative uniformity of the pore distribution in the thickness of the active layer of the membrane, and made it possible to determine their configuration. The data on the pore structure morphology of semipermeable membranes indicated that sorption region of MGA-95 and ESPA membranes was formed by pores of different types with varied surface morphology; smaller radius pores had a smoother surface, while larger pores had a rough surface. The number of larger radius pores –12.9 and 16.8 nm were equal to 20 and 35.6 % for MGA-95 and ESPA, respectively. Specific surface values for MGA-95 was Ssp = 9.15 ⋅ 10 m and for ESPA it was Ssp = 5.95 ⋅ 10 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.