Abstract

This paper presents a micro-electro-mechanical system (MEMS) radio frequency front-end (RFFE) filter at 8.4 GHz. The center frequency of 8.4 GHz is achieved by resorting to the third-order antisymmetric Lamb wave mode (A3) in 650 nm thick Z-cut lithium niobate thin film. For the first time, a novel band-width-widening technique based on the utilizing of the self-induct-ance of the top interdigital electrodes is proposed to overcome the limitations set by the electromechanical coupling and satisfy the demands in miniaturization and wide bandwidth. The fabricated filter has demonstrated a 3 dB fractional bandwidth (FBW) of 3.45% (BW=290 MHz), a minimum insertion loss (IL) of 2.7 dB, and a compact footprint of 0.56 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . After utilizing bonding wires as matching inductors, the minimum IL can be decreased to be 2 dB in 50 Ω system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call